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Abstract. A number of new coagulation models depending on a parameter is derived. The
dependence is considered in two different ways. If the parameter takes its maximal value then
in the first case we obtain a new discrete kinetic equation. We demonstrate that its continuous
version is simply the Oort–Hulst’s coagulation model. In the second case, the maximum of the
corresponding parameter yields the Smoluchowski coagulation equation. At the minimal values of
both parameters we arrive at another new kinetic equation. These three models form a ‘triangle’
connecting the two known coagulation equations ‘situated’ in its vertexes (Smoluchowski and Oort–
Hulst equations) via an alteration of the parameters. Also, a comparative analysis of these three
models is presented. As an advantage of the Oort–Hulst approach we compute the coagulation front
and establish a connection between the infringement of the mass conservation law and convergence
of the coagulation front to infinity.

0. Preliminaries

We are concerned with disperse systems containing particles of different masses (volumes) that
can undergo mutual interactions resulting in a change of their masses. Such systems take place
in astronomy (forming of cosmic objects), atmospheric science (evolution of clouds), chemistry
(polymer reactors and colloids), etc. If the average mass of particles (i.e. the relation of total
mass of all particles divided by the amount of all particles) increases in time then this process
is called coagulation. Usually, it is assumed that a coagulation process may be considered
as merging two colliding particles. This assumption leads to the well known Smoluchowski
coagulation equation [1], which is often written either in the continuous, or discrete forms.
However, there is another continuous coagulation model by Oort and van de Hulst [2] written
in a convenient form by Safronov [3]. The second model is used in astronomy to analyse
cosmic objects (creation of stars, planets, evolution of nebulae, galaxies, clouds of cosmic
dust, etc) [2–5], in atmosphere science [6–10] and in technical installations [7,11].

We derive two one-parameter families of discrete coagulation models. The more values of
the parameters, the more intensive a coagulation process we have. We prove that the maximum
value of the parameter of the first family yields a discrete balance equation. It turns out that
this equation is the discrete version of the Oort–Hulst coagulation equation (section 3), written
earlier in the continuous form. The minimum value of the parameter gives us a new discrete
kinetic equation with low intensity of coagulation. It plays an auxiliary role in our analysis.

Then we consider another one-parameter family of kinetic equations (section 2). We
demonstrate, that the maximum value of the second parameter yields the discrete version of
the renowned Smoluchowski coagulation equation. The minimum of the second parameter
leads us to the same auxiliary discrete kinetic equation.
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So, we obtain three discrete coagulation models, which can be presented as a triangle.
One side of the triangle connects the discrete version of the Oort–Hulst’s equation and the
auxiliary kinetic equation, provided that the values of the first parameter change. Another side
connects the discrete Smoluchowski equation and the same auxiliary kinetic model if values
of the second parameter change. So, through the auxiliary kinetic model we establish the
interconnection between the basic Smoluchowski and Oort–Hulst coagulation equations.

After that we compare a number of mathematical properties of both basic coagulation
equations. We conclude that, usually, these equations yield almost the same results and thus
can both be applied to the analysis of disperse systems yielding a wider treatment of coagulation
processes. Some of the mathematical properties of these equations differ and, hence, can be
treated as useful complements of each other. As an example of such a useful completion we
compute the speed of the coagulation front. Such computations become possible only after
taking the Oort–Hulst equation into account.

As a more advanced example, we observe that the famous phenomenon of breaking down
the mass conservation law at the intensive coagulation rate happens at the same time moment
as when the coagulation front goes to infinity. This observation allows us to reveal some new
classes of coagulation kernels yielding the breaking down of the mass conservation law.

1. A family of discrete coagulation models

We consider a disperse system possessing the following properties:

(1) the system is sufficiently rarefied to assume that colliding particles do not undergo any
influence of other particles;

(2) average collision time (microscopic time) is essentially less than the time of changing the
distribution function;

(3) there exist some random forces, which blend the disperse system such that the motion of
particles between collision acts (including the process of their approach) is statistically
independent;

(4) masses (volumes) of all particles are proportional to somem0 > 0.

Let us consider the following mechanism of growth of particles as a result of the collisions
of pairs of particles of masses (volumes)im0 andjm0. Hereinafter we assume for definiteness
i > j . We call the particles of massim0, i-mers.m0 is the mass of the smallest particles in
the system.

Let a collision of ani-mer and aj -mer yield fragmentation ofj -mer ontoα monomers
(α = α(j)) and aj − α-mer. Each of thoseα monomers joins instantly to ani-mer (different
for each monomer). It is worth pointing out that the consideration of such a joining the resultant
monomers toi-mers is a mathematical convenience rather than a physical reality.

Thus, as a result of one collision act we haveα newi+1-mers and onej−α-mer (figure 1).
The parameterα(j) is supposed to be non-decreasing with respect to the variablej .

From the balance reasonings we come to the following kinetic model:

dci (t)

dt
= ci−1(t)

i−1∑
j=1

Ki−1,j α(j)cj (t)− ci(t)
i∑

j=1

Ki,jα(j)cj (t)

−
∞∑
j=i

Ki,j ci(t)cj (t) +
∑
m(i)

∞∑
j=m(i)

Km(i),j cm(i)(t)cj (t) i > 1 (1)

whereci(t) is the concentration ofi-mers at time momentt , Ki,j for i 6= j is equal to the
intensity rate of collisions ofi-mers andj -mers; this rate is supposed to be prescribed by
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Figure 1. (α = 3.)

the process considered. From the physical point of view it is clear that this function must be
symmetric for all argumentsi, j > 1: Ki,j = Kj,i . The valuesKi,i are equal to half of the
collisions’ rate for the particles of massi. This phenomenon is caused by double reducing of
pairs of particles, which can interact.

The first summand in the right-hand side of (1) yields the income ofi-mers into the
disperse system due to collisions ofi − 1-mers and monomers formed by fragmentedj -mers.
If i = 1 then we set it equal to zero. The second summand describes the decay ofi-mers as a
result of merging monomers to them. The multiplayerα in the first and the second summands
demonstrates thatαmonomers take part in the collision act. The third and fourth terms describe
decay and income ofi-mers due to fragmentation ofi-mers (third) and fragmentation ofm-
mers (fourth). In the last double summand a largerj -mer ‘bites off’m-merα(m) monomers,
and thei-mer rest ofm-mer appears in the system. It is clear that the positive integer valuem

satisfies the correlation

i + α(m) = m. (2)

Here each term should be positive and an integer. For example, if we haveα(j) = j − 1, then
at i = 1 equation (2) has infinitely many solutionsm > 2, and the fourth summand becomes
equal to

∞∑
m=2

∞∑
j=m

Km,j cmcj .

If equation (2) has no solutions then the fourth summand should be omitted (e.g., atα(m) = m).
However, often equation (2) has a unique rootm, and the fourth summand in (1) transforms to

∞∑
j=m

Km,j cmcj .

If we supply equation (1) by non-negative initial dataci(0) then it is possible to observe
that solutions of (1) are non-negative, too. To demonstrate that, we use the following integral
form of (1):

ci(t) = exp

{
−
∫ t

0

( i∑
j=1

Ki,jα(j)cj (s) +
∞∑
j=i

Ki,j cj (s)

)
ds

}
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×
(
ci(0) +

∫ t

0
exp

{∫ s

0

[ i∑
j=1

Ki,jα(j)cj (s1) +
∞∑
j=i

Ki,j cj (s1)

]
ds1

}

×
[
ci−1(s)

i−1∑
j=1

Ki−1,j α(j)cj (s) +
∑
m(i)

∞∑
j=m(i)

Km(i),j cm(i)(s)cj (s)

]
ds

)
. (3)

If initial data ci(0) are strictly positive, then for truncated coagulation kernelsKm,j =
0, m, j > N0, we easily obtain positivity ofci(t) for all i > 1, t > 0 by assuming that there
is a timet0 and a numberi0 such thatci0(t0) = 0 and by arriving from (3) to a contradiction. If
initial data are not strictly positive, then we approximate them by positive initial data and obtain
the non-negativity of a solution by passing to a limit. The non-negativity of a solution for a
non-truncated kernel is more complicated, it can be proved along with the existence theorem by
approximatingKm,j by a sequence of truncated kernels, generating the corresponding sequence
of non-negative solutions of (3), and then passing to a limit which is a solution of (3). The
non-negativity of the obtained limit is obvious.

If α = 1 then we obtain from (1) the following kinetic equation:

dci
dt
= ci−1

i−1∑
j=1

Ki−1,j cj − ci
i∑

j=1

Ki,j cj −
∞∑
j=i

Ki,j cicj + ci+1

∞∑
j=i+1

Ki+1,j cj i > 1. (4)

At α(j) = j (i.e. if the smaller particle is completely destroyed onto monomers, which
‘stuck’ instantly to larger particles) then we derive from (1)

dci
dt
= ci−1

i−1∑
j=1

Ki−1,j jcj − ci
i∑

j=1

Ki,j jcj −
∞∑
j=i

Ki,j cicj . (5)

In this case the fourth summand of (1) is absent since smaller particles are completely destroyed
without a rest (the fourth summand describes the contribution of such ‘rests’). Mathematically,
this means that the above-mentioned equationi + α(m) = m has no rootsm.

Let us verify if equations (4), (5) possess the mass conservation law

M1
def=

∞∑
i=1

ici(t)
?= const. (6)

With this aim we multiply (5) byi and summarize it over 16 i 6∞. Then we obtain

dM1

dt
=
∞∑
i=1

i−1∑
j=1

ijKi−1,j ci−1cj −
∞∑
i=1

i∑
j=1

ijKi,j cicj −
∞∑
i=1

∞∑
j=i

iKi,j cicj .

In the third summand we replace the order of summation and get the summation over∑∞
j=1

∑j

i=1 . Then in the second and the third terms we ‘bite off’ the summand atj = i

and make the replacementi = i ′ + j ′, j = j ′. Then,

dM1

dt
=
∞∑
i=1

∞∑
j=1

(i + j)jKi+j−1,j ci+j−1cj −
∞∑
i=1

∞∑
j=1

(i + j)jKi+j,j ci+j cj

−
∞∑
i=1

i(i + 1)Ki,ic
2
i −

∞∑
i=1

∞∑
j=1

jKi+j,j ci+j cj .

After a number of replacements likei = i + 1 we obtain zero and, thus, come to the mass
conservation law. Similar reasonings demonstrate the mass conservation for equation (4).

So, the alteration of the parameterα(j) from 1 toj connects the coagulation models (4)
and (5).
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Figure 2. (β = 2.)

2. Another family of discrete coagulation models

In this section we establish a connection between model (4) and the renowned Smoluchowski
coagulation equation. Let us consider another mechanism of an elementary collision act
between particlesi andj , i > j . Namely, we suppose that the larger particlei ‘bites off’
j -mer andβ-mer (β = β(j) 6 j ) and, thus, the size of the larger particle becomes equal to
i + β. The size ofj -mer becomes equal toj − β (figure 2). It is natural to assume thatβ(j)
has non-decreasing dependence on the variablej . The balance reasonings yield the following
kinetic equation

dci(t)

dt
=

n∑
j=1

Ki−β,j ci−β(t)cj (t)− ci(t)
i∑

j=1

Ki,j cj (t)

−ci(t)
∞∑
j=i

Ki,j cj (t) +
∑
m(i)

∞∑
j=m(i)

Km(i),j cm(i)(t)cj (t) β = β(j) (7)

where the first summand is responsible for income ofi-mer particles due to ‘gluing’i−β-mers
andβ-mers that were chipped offj -mers (β 6 j ). The upper boundaryn of the summation is
determined by the following inequalities

i − β(n) > n i − β(n + 1) < n + 1. (8)

This system of inequalities has a unique solutionn since we assume a non-decreasing
dependenceβ(j) on j .

The negative terms of (7) describe the decay ofi-mers due to collisions withj -mers. It
can be derived from two negative summands in (1) putting in the first of themα = 1, because,
unlike (1), an elementary collision act deals now with onei-mer only.

The last summand in (7) is defined as the corresponding summand in (1). It yields an
income of i-mer rests after collisions ofm-mers andj -mers,j > m. The valuesm are
determined by the equationi + α(m) = m, where all terms should be positive.

Substitutingβ = 1 in (7) again yields kinetic equation (4). Ifβ(j) = j (i.e. i-mer and
j -mer just merge, resulting intoi + j -mer), then inequalities (8) yieldn = [i/2] with [i/2]
equal to the integer part of [i/2]. In view of the symmetryKi,j = Kj,i we observe that equation
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(7) transforms to the classical Smoluchowski equation [1]

dci
dt
= 1

2

i−1∑
j=1

Ki−j,j ci−j cj − ci
∞∑
j=1

Ki,j cj . (9)

Unlike the previous equations, where the valuesKi,i are less than twice real intensities of
mutual collisions ofi-mers, in (9) the coefficient12 is directly written before the first summand
and is taken into account in the second summand uniting both negative terms of (7) (there the
term atj = i is taken into account twice). So, the valuesKi,i in (9) are equal to real intensities
without dividing them by two. If we rewrite the first summand (7) as

n∑
j=1

Ki−j,j ci−j cj n =
{
(i − 1)/2 for oddi

i/2 for eveni
(10)

then its similarity to the corresponding summand of (9) is more clear. The solution of system (8)
for this case is written in (10).

The celebrated continuous version of (9) is presented below:

∂c(x, t)

∂t
= 1

2

∫ x

0
K(x − y, y)c(x − y, t)c(y, t)dy − c(x, t)

∫ ∞
0
K(x, y)c(y, t)dy. (11)

Its derivation from (9) is well known [12].

3. Passage to the Oort–Hulst equation

A remarkable observation is that the passage to limitm0 → 0 in (5) yields the well known
continuous coagulation model

∂c(x, t)

∂t
= − ∂

∂x

[
c(x, t)

∫ x

0
yK(x, y)c(y, t)dy

]
−
∫ ∞
x

K(x, y)c(x, t)c(y, t)dy. (12)

In fact, to pass to a continuous form of (5), we introduce the disrtibution finctionc(x, t)

describing distribution of particles in massx at timet , i.e.,c(x, t)dx is equal to the number
of particles with masses from(x, x + dx) at timet . Since the mass ofi-mers is equal toim0,
thenci(t) = c(im0, t)m0. SinceKi,j = K(im0, jm0), then

Ki,j ci(t)cj (t) = K(im0, jm0)c(im0, t)c(jm0, t)m
2
0. (13)

Consequently, using the replacementx = im0, we obtain

∂c(x, t)

∂t
= − 1

m0

[
c(x, t)

x/m0∑
j=1

K(x, jm0)c(jm0, t)jm0

−c(x −m0, t)

x/m0−1∑
j=1

K(x −m0, jm0)c(jm0, t)jm0

]
m0

−c(x, t)
∞∑
j=i

K(x, jm0)c(jm0, t)m0.

Observing, that these sums are just the integral Darboux sums, we pass to limitm0→ 0, and
obtain (12). Equation (12) was derived by a completely different methods by Oort and van de
Hulst [2] and was rewritten in the form (12) by Safronov [3]. So, it turns out that equation (12)
is the continuous version of the new discrete equation (5). It is interesting to mention that there
were no discrete versions of (12) earlier. Usually, continuous limit equations are derived from
their discrete analogues. As an example we can present the basic Smoluchowski coagulation
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equation, which was first derived in its discrete form in 1916 [1], and only in 1928 was its
continuous version written by M̈uller [12]. Another, more recent example, can be found
in [13], where the authors first derive a discrete monomer–monomer model for heterogeneous
catalysis, and then they pass to the limit equation in a continuous form. Other interesting
related models can be found in [14,15].

Some reasonings, slightly related to our derivation of equation (5), can be found in [11,
p 131] where the authors noted some connection between (12) and the following process:l

particles of massx during time1t collide with small particles of massµ/l, µ < x. This
connection is derived on the basis of a series expansion of some functions and a truncation of
the series without proper justification (also, cf [6, p 45 and 7, pp 154–5]).

The Oort–Hulst equation (12) can be treated as a model of continuous growth [3, 7]. In
fact, if we assume that all particles grow up as a result of joining lesser particles, then the
first integral of the right-hand side of (12) is equal to dx/dt , and the whole first summand
is only changingc(x, t) due to joining the particles with massesy, y < x. Hence, without
the last term equation (12) is a one-dimensional continuity equation with ‘density’c(x, t) and
‘velocity’ dx/dt . The second term in (12) is the decay of particles of massx as a result of their
‘sedimentation’ on larger particles. So, a particle preserves its ‘individuality’ at collisions with
smaller particles, and loses it at collisions with larger particles. In other words, the collisions
of particles of massx with smaller particles change the mass of particlesx, the collisions
with larger particles change the number of particlesx. This procedure gives the average and
smoothed rate of growth of all particles of a certain radius.

It is worth mentioning that in works [4, 5] the coagulation model (12) was applied
to the analysis of the evolution of different cosmic objects. A similar approach for
coagulation growth, involving a small number of uniquely sized large droplets falling through
a homogeneous, randomly distributed collection of smaller droplets, was used to compute the
coagulation processes in atmosphere clouds by Telford [8], who solved Oort–Hulst equation
(12) without the second term in the right-hand side. In later papers [9, 10] it was shown
numerically and analytically, respectively, that the method of [8] (and, consequently, equation
(12)) yielded results similar to the common kinetic Smoluchowski approach. Also, it is pointed
out in [7,11] that (12) is also useful for the investigation of processes in technical installations
(nozzles and engines).

Hence, we can say that there exists a ‘coagulation triangle’ whose vertexes are constituted
by models (4), (5), and (9), and its two sides are formed by the ‘intermediate’ models (1), (7)
at 16 α(j) 6 j and 16 β(j) 6 j , respectively.

In the next section we discuss some common features and distinctions between the
coagulations models (4), (5) and (9).

4. Comparative mathematical analysis of the coagulation models

(1) Mass conservation. There are many works devoted to the physical and mathematical
analysis of the Smoluchowski equations (9), (11) (see, e.g., [16]). The mass conservation law
for this equation is well known. It holds if the sums over infinite interval

∞∑
j=1

jKi,j cj

are bounded. These sums appear at the formal summation of the equation with weighti. In
this case for the first moment of solutionM1(t)we haveM1 =const. As we have already seen,
the direct summation of (4) and (5) with weighti also yields the mass conservation provided
that the corresponding infinite sums are bounded.
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(2) Dissipation law. The zero momentM0 =
∑
ci of solutions means the total number of

particles in the unite volume of the disperse system. Due to coagulation this value should
decrease in time. Summation of (4) and (5) leads us to the necessary inequality

dM0(t)/dt 6 0

that additionally justifies these models.

(3) Becker–D̈oring equations. Let us impose the ‘admissibility’ condition that for the case of
the simplest kinetics when collisions may occur with monomers only, all coagulation models
should yield the same equation. In this case

Ki,j =


ki j = 1

kj i = 1

0 otherwise

and all the models considered (4), (5), and (9) give us the Becker–Döring cluster equations
[17,18]

dci(t)

dt
= ki−1ci−1c1− kicic1 i > 2

dc1(t)

dt
= −k1c

2
1 −

∞∑
j=1

kj c1cj .

So, the ‘admissibility condition’ is fulfilled.

(4) Singular equilibriums. Following [19–21], the continuous versions (12) and (11) of the
basic ‘vertex’ models should have singular equilibrium solutions of the form

L(x, y)
def= K(x, y)c(x)c(y) = (x + y)−3.

The direct check confirms that both stationary equations (11) and (12) have such a solution.

(5) Spreading of perturbations. An important difference between the Smoluchowski and
Oort–Hulst models is that the Smoluchowski equation spreads perturbation with infinite
speed. To demonstrate this fact letK ≡ 1 and let equation (9) be provided with initial
datac0 = (1, 0, 0, 0, . . .). Passing to the generating functionG(z, t) = ∑∞

i=1 z
ici(t), we

obtain
∂G

∂t
= 1

2
G2(z, t)−G(z, t)G(1, t) G0(z) = z

whence

G(z, t) =
∞∑
i=1

zi
(t/2)i−1

(1 + t/2)i+1
.

Consequently,

ci(t) = (t/2)i−1

(1 + t/2)i+1
> 0 for all t > 0, i > 1. (14)

Therefore, zero initial data become positive instantly for any largei. Hence, the non-zero
initial value ati = 1 spreads with infinite speed. This lack is similar to the same property for,
e.g., the heat equation and mathematically means the presence of parabolic properties for (9),
(11).
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Unlike the Smoluchowski equation, the Oort–Hulst equation (12) does not possess this
lack. In fact, we differentiate (12) and rewrite it as

∂c(x, t)

∂t
+ v(x, t)

∂c(x, t)

∂x
= −c(x, t)

(∫ x

0
y∂1K(x, y)c(y, t)dy

)
−xK(x, x)c(x, t)2 − c(x, t)

∫ ∞
x

K(x, y)c(y, t)dy (15)

where

v(x, t) =
∫ x

0
yK(x, y)c(y, t)dy

and∂1K(x, y)means differentiatingK with respect to the first variable. Letx(s) be a solution
of the characteristic equation dx/dt = v(x, t). Then the substitution

c(x, t) = exp

{
−
∫ t

0

[
K(x(s), x(s))c(x(s), s)x(s)−

∫ x(s)

0
y∂1K(x(s), y)c(y, s)dy

−
∫ ∞
x(s)

K(x(s), y)c(y, s)dy

]
ds

}
· u(x, t) (16)

yields

∂u(x, t)

∂t
+ v(x, t)

∂u(x, t)

∂x
= 0. (17)

From (16) we see, that functionsc(x, t) andu(x, t) are equal or not equal to zero at the same
points. The characteristic equation for (15), (17) has the following form:

dx

dt
= v(x, t). (18)

From simple equation (17) we conclude that ifc0(x1) = 0, thenc(x1, t) becomes positive not
earlier than at time momentt1 when the first characteristic curvex(s) with non-zero starting
valuex0 arrives at the pointx1 (figure 3). So, equation (12) ensures physically meaningful
boundedness of the perturbation propagation speed, and, thus, allows us to compute the
coagulation front. Mathematically that means that (12) possesses some hyperbolic properties.

Figure 3.



790 P B Dubovski

5. Computing the coagulation front

To demonstrate the reasonings of section 4(5), let us estimate the coagulation front in some
cases. Letc0(x) = 0 if x > x0. Then the characteristic curve, beginning at the pointx0, splits
the plane to two parts such thatc(x, t) = 0 if the point(x, t) is to the right of that characteristic.
This characteristic curve we call the boundary characteristic or just the coagulation front. From
characteristic equation (18) we see that coagulation front satisfies the following equation:

dx

dt
=
∫ x

0
yK(x, y)c(y, t)dy =

∫ ∞
0
yK(x, y)c(y, t)dy (19)

at the initial valuex(0) = x0.
So, ifK(x, y) = C = const then

x(t) = x0 +C ·M1t (20)

whereM1 is the constant first moment of the solution.
If the coagulation kernel is additive, i.e.K(x, y) = (x + y), then from (19):

dx

dt
= M2(t) +M1x.

Hence,

x(t) = exp(M1t)

{
x0 +

∫ t

0
exp(−M1s)M2(s) ds

}
. (21)

It is rather complicated to find out the second momentM2(t) from the Oort–Hulst equation (12).
In fact, from (12) we observe

dMk(t)

dt
=
∫ ∞

0

∫ x

0
yK(x, y)c(x, t)c(y, t)[kxk−1− yk−1] dy dx k > 0. (22)

So, for the additive kernel we have

dM2(t)

dt
= 4M2(t)M1− 3

∫ ∞
0

∫ ∞
x

x2yc(x, t)c(y, t)dy dx

−2
∫ ∞

0

∫ ∞
x

xy2c(x, t)c(y, t)dy dx

−
∫ ∞

0

∫ ∞
x

x3c(x, t)c(y, t)dy dx > 4M2(t)M1

−3

[ ∫ ∞
0

∫ ∞
x

x2yc(x, t)c(y, t)dy dx +
∫ ∞

0

∫ ∞
x

xy2c(x, t)c(y, t)dy dx

]
= M1M2(t). (23)

To derive (23) we have utilized the following inequalities:∫ ∞
0

∫ x

0
xkykc(x)c(y) dy dx = 1

2

(∫ ∞
0
xkc(x) dx

)2

(24)∫ ∞
x

ykc(y) dy 6 1

x

∫ ∞
x

yk+1c(y) dy. (25)

Finally, we obtain from (23):

M1M2(t) 6
dM2(t)

dt
6 2M1M2(t). (26)

ThenM2(0) exp(M1t) 6 M2(t) 6 M2(0) exp(2M1t).
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The Smoluchowski equation (11) yields

dMk(t)

dt
= 1

2

∫ ∞
0

∫ ∞
0
K(x, y)c(x, t)c(y, t)[(x + y)k − xk − yk] dy dx k > 0. (27)

From (27) we obtain for the caseK(x, y) = (x + y) the result, similar to (26):

dM2(t)

dt
= 2M2(t)M1. (28)

So, for convenience we can use equality (28) instead of inequality (26). Substituting (28) into
(21), we conclude that for additive coagulation kernels the coagulation front grows faster than
for constant kernels (cf (20)):

x(t) = exp(M1t){x0 +M2(0)t}. (29)

Similar reasonings give us front estimates for many coagulation kernels. For example, if
for some positive constantsa andb

K(x, y) =
{
ax + by x > y
ay + bx y > x

then for boundary characteristics,

dx

dt
= axM1 + bM2(t).

Observing from (11) that

min{a, b}M1M2 6
dM2

dt
6 max{a, b}M1M2

we obtain fora > b the following estimate for coagulation front:

eaM1t

{
x0 + bM2(0)

1− exp[−(a − b)M1t ]

(a − b)M1

}
6 x(t) 6 eaM1t {x0 + bM2(0)t}.

The similar correlation holds for the caseb > a.
Let us consider now the coagulation front for multiplicative coagulation kernelsK(x, y) =

xy. From (19) we see that

x(t) = x0 exp

(∫ t

0
M2(s) ds

)
.

For the Smoluchowski equation (11) we have unboundedness of the second momentM2(t)

at the critical momenttcr = [M2(0)]−1 :

M2(t) = M2(0)(1−M2(0)t)
−1.

Taking into account inequalities (24), (25), we also obtain forK(x, y) = xy the
unboundedness of the second moment:

M2(0)

1−M2(0)t/2
6 M2(t) 6

M2(0)

1−M2(0)t
.

For this model [M2(0)]−1 6 tcr 6 2[M2(0)]−1.
So, we can see that the coagulation front goes to infinity ast → tcr.
Let us pay attention to another effect of influence of the infinity—breaking up the mass

conservation law at the same critical timetcr. It is well known that this effect for Smoluchowski
equation (11) is caused by the trend of the second moment of solutionsM2 to go to infinity
(see, e.g., [22–28]). So, it turns out that convergence to infinity of the coagulation front means
the breaking down of the mass conservation law. This observation allows us to establish the
infringement of mass conservation law for a number of other coagulation kernels [29].
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6. Conclusions

We derive three basic discrete coagulation models connected via alteration of the parameters,
which describe collisions of patricles. Therefore, we can say that these equations form a
triangle of interconnected coagulation models.

It turns out, that one of these three models is a discrete version of the well known Oort–Hulst
continuous coagulation equation. Another model is the celebrated Smoluchowski equation.
The third model corresponds to collisions with minimal intensity because it is derived at the
smallest value of parametersα, β connecting (4) and (5), and (4) and (9), respectively.

If the coagulation kernelK(x, y) grows more slowly thanx ·y then the mass conservation
law is valid for all described coagulation types. Also, the particle dissipation law holds.
Reducing all discrete equations to the same Becker–Döring system additionally justifies the
validity of three basic coagulation models (4), (5) and (9), situated in the vertexes of the
coagulation ‘triangle’ introduced in this paper.

Comparing the continuous Smoluchowski and Oort–Hulst equations yields the same
singular equilibrium solution. This fact is an additional reason for the opinion that these
equations similarly describe the real coagulation processes.

The Oort–Hulst equation (12) allows us to estimate the speed of the coagulation front.
We do that for some cases. Such an estimation is impossible using only the Smoluchowski
equation.

We establish a connection between convergence of the coagulation front to infinity
and break down the mass conservation law at intensive coagulation rates. It turns out that
coagulation front goes to infinity at the same critical time as mass conservation breaks.
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